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A Tiny Theory

theory BT imports Main begin

datatype 'a bt
Lf

fun reflect :: "'a bt = 'a bt" where
"reflect Lf = Lf"

| "reflect (Br a tl t2) = Br a (reflect t2) (reflect tl)"

lemma reflect reflect ident: "reflect (reflect t) = t°
apply (induct t)
apply auto
done

end
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theory BT imports Main begin

datatype 'a bt = the theory it builds upon
Lf

declarations of types,

fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"

| "reflect (Br a tl t2) = Br a (reflect t2) (reflect tl1)"

lemma reflect reflect ident: "reflect (reflect t) = t°"
apply (induct t)
apply auto
done
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name of the

caizyn ATiny Theory

theory BT imports Main begin

datatype 'a bt = the theory it builds upon
Lf

declarations of types,

fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"

| "reflect (Br a tl t2) = Br a (reflect t2) (reflect tl1)"

lemma reflect reflect ident: "reflect (reflect t) = t°"
apply (induct

t\
apply auto proving a theorem
done

end




Notes on Theory Structure




Notes on Theory Structure

® A theory can import any existing theories.




Notes on Theory Structure

® A theory can import any existing theories.

® Types, constants, etc., must be declared before use.




Notes on Theory Structure

® A theory can import any existing theories.

® Types, constants, etc., must be declared before use.

® The various declarations and proofs may
otherwise appear in any order.




Notes on Theory Structure

A theory can import any existing theories.

Types, constants, etc., must be declared before use.

The various declarations and proofs may
otherwise appear in any order.

Many declarations can be confined to local scopes.




Notes on Theory Structure

A theory can import any existing theories.

Types, constants, etc., must be declared before use.

The various declarations and proofs may
otherwise appear in any order.

Many declarations can be confined to local scopes.

A finished theory can be imported by others.




Some Fancy Type Declarations

typedecl loc

type synonym
type synonym
type synonym
type synonym

datatype
com = SKIP

Semi
Cond
While

- "an unspecified type of locations”

nat -- "values"
"loc => val"”

"state => wval"
"state => bool" "functions on states"”

Assign loc aexp : " 60)

com com ! _[60, 60] 10)
bexp com com THEN ELSE " 60)

bexp com DO " 60)
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Some Fancy Type Declarations

typedecl loc -- "an unspecified type of locations”

type synonym val nat -- "value;f\\\\\\\~ o S e
type synonym state "loc => val" k///// YP

type synonym aexp "state => wval”
type synonym bexp "state => bool" -- "functions on states'

datatype concrete syntax for commands

com = SKIP
| Assign loc aexp : " 60)
| Semi  com com " 160, 60] 10)
Cond bexp com com THEN ELSE " 60)

While bexp com DO " 60)

recursive type of commands
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Notes on Type Declarations

® Type synonyms merely introduce abbreviations.

® Recursive data types are less general than in
functional programming languages.

* No recursion into the domain of a function.
 Mutually recursive definitions can be tricky.

® Recursive types are equipped with proof methods
for induction and case analysis.




Basic Constant Definitions

- Def.thy
QWX 4P XG0 < 66 F
theory Def imports Main begin

text{*The square of a natural number*}
definition square :: where

text{*The concept of a prime number¥*}
definition prime :: where

-u-:**-  Def.thy<2> Top L10 (Isar Utoks Abbrev; Scripting )
constants
prime :: "nat = bool"

-u-:%%- *response* All L2 (Isar Messages Utoks Abbrev;)
Auto-saving. . .done
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Notes on Constant Definitions

® PBasic definitions are not recursive.

® Every variable on the right-hand side must also
appear on the left.

® |n proofs, definitions are not expanded by default!

* Defining the constant C to denote t yields the
theorem C def, asserting C=t.

* Abbreviations can be declared through a
separate mechanism.
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Lists in Isabelle

® We illustrate data types and functions using a
reduced Isabelle theory that lacks lists.

® [he standard Isabelle environment has a
comprehensive list library:

* Functions # (cons), @ (append), map, filter,
nth, take,drop, takeWhile,
dropWhile,...

Cases: (case xs of [ =[] | x#xs = ...)

Over 600 theorems!
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List Induction Principle

To show @(xs), it suffices to show the base case and
inductive step:

* @(Nil)
* P(xs) = @(Cons(x,xs))

The principle of case analysis is similar, expressing
that any list has one of the forms Nil or Cons(x,xs)
(for some x and xs).




Proof General

Demolist.thy

DO A 4P Y .o = 6 F

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

datatype 'a list = Nil | Cons 'a
fun app ::

lemma [simp]:
» / (induct xs)
/ auto
-u-:--- DemolList.thy Top L10 (Isar Utoks Abbrev; Scripting )

proof (prove): step 0

goal (1 subgoal):
1. app xs Nil = xs

(Isar Proofstate Utoks Abbrev;)




Proof General

> Demolist.thy
QO Z 4P XY .m0 = ¢

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N NN

datatype 'a list = Nil | Cons 'a
fun app ::
I

processed material

lemma [simp]: ; : 2

ooy CLadict x5 highlighted in blue
apply auto

-u-:--- DemolList.thy Top L10  (Isar Utoks Abbrev; Scripting )

proof (prove): step 0

goal (1 subgoal):
1. app xs Nil = xs

(Isar Proofstate Utoks Abbrev;)




Proof General

» Demolist.thy
QO EZ 4P Y- = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N NN

datatype 'a list = Nil | Cons 'a
fun app ::

| processed material

lemma [simp]: N . . .
» opply (induct xs) hlgh'lght@d N blue
apply auto
-u-:--- DemolList.thy Top L10 Abhreyv. ioting

proof (prove): step @ <€— Isabelle’s output shown

goal (1 subgoal): in a separate window
1. app xs Nil = xs

(Isar Proofstate Utoks Abbrev;)




Proof General

> Demolist.thy
QO ZEZ 4P Y .o = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N NN

datatype 'a list = Nil | Cons 'a
fun app ::
I

processed material

.lemma [simp]: XS N | highlighted in blue

apply (induct xs)
apply auto
-u-:--- DemolList.thy Top L10 Abhreyv. ioting

proof (prove): step 0 <— Isabelle’s output shown

goal (1 subgoal): in a separate window
1. app xs Nil = xs

the very start of

a proof attempt
(Isar Proofstate Utoks Abbrev;)




Proof by Induction

Demolist.thy

QO E 4P Yo = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

datatype 'a list = N1l | Cons 'a
fun app ::
l
lemma [simp]:
(induct xs)
» auto
-u-:--- DemolList.thy Top L12 (Isar Utoks Abbrev; Scripting )
proof (prove): step 1
goal (2 subgoals):

1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next




Proof by Induction

» Demolist.thy

RO E 4P XYM .o = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

" T . T

datatype 'a list = Nil | Cons 'a
fun app ::

' structural induction

lemma [simp]:

- Cinduct xs) <— on the list xs

pply auto
-u-:--- DemolList.thy Top L12 (Isar Utoks Abbrev; Scripting )

proof (prove): step 1

goal (2 subgoals):
1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next




Proof by Induction

> Demolist.thy
QOO ZEZ 4P Y. = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

" T . B

datatype 'a list = Nil | Cons 'a
fun app ::

' structural induction

lemma [simp]:

oLy CLadct o) 4— on the list xs

» apply auto
-u-:--- DemolList.thy Top L12 (Isar Utoks_Abt

oroof (prove): step 1 base case and

goal (2 subgoals): inductive Step
1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next




Proof by Induction

> Demolist.thy
QX 4P Y. = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N NS

datatype 'a list = Nil | Cons 'a
fun app ::

' structural induction

lemma [simp]:

(induct xs) & on the IlSt XS

» apply auto
-u-:--- DemolList.thy Top L12 (Isar Utoks_Abt

nm v
WAV LY

proof (prove): step 1 base case and

goal (2 subgoals): inductive Step
1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

_u-:3%-  *goals® e \nduction hypothesis

tool-bar next




Finishing a Proof

Demolist.thy

DA 4P XY 6 .- O o P
datatype 'a list = Nil | Cons ‘'a

fun app ::

l

lemma [simp]:
(induct xs)
auto
P done

-u-:--- Demolist.thy 7% L4 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2

goal:
No subgoals!

(Isar Proofstate Utoks Abbrev;)




Finishing a Proof

» Demolist.thy
QOO ZEZ 4P Y. = 6P
datatype 'a list = Nil | Cons 'a

" T . B

fun app ::
l

lemma [simp]:
apply (induct xs)

auto proves both

-u-:--- DemolList.thy 7% L4 (Isar Utoks Abbrev; Scripting )
proof (prove): step 2

goal:
No subgoals!

(Isar Proofstate Utoks Abbrev;)




Finishing a Proof

> Demolist.thy
DR 4P Yo = 6P
datatype 'a list = Nil | Cons 'a

N NS

fun app ::
I

lemma [simp]:
apply (induct xs)
apply auto < auto proves both
done

-u-:--- Demolist.thy 7% L4 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2

goal:
No subgoals!

We must still issue “done”

to register the theorem




Another Proof Attempt

Demolist.thy

DO XX 4P XY .o O o

done
fun rev where
I

lemma rev_rev:
(induct xs)
auto
done

~u-:--- DemolList.thy 22% L20 (Isar Utoks Abbrev; Scripting )

proof (prove): step 1

goal (2 subgoals):
1. rev (rev Nil) = Nil
2. Na xs. rev (rev xs) = xs = rev (rev (Cons a xs)) = Cons a xs

-u-:%¥%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1plS5/Dropbox/ACS/1 - Introduction/DemolList.thy




Another Proof Attempt

~ ~ ,

» Demolist.thy

DCOET 4P Y .0

done

fon rev where - list reversal function

lemma rev_rev:
/ (induct xs)
/ auto
done

-u-:--- DemolList.thy 22% L20 (Isar Utoks Abbrev; Scripting )
proof (prove): step 1
goal (2 subgoals):

1. rev (rev Nil) = Nil
2. Na xs. rev (rev xs) = xs = rev (rev (Cons a xs)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Another Proof Attempt

" T . T

» Demolist.thy

RO E 4P XYM .o = 6P

done 3
fon rev where - list reversal function

lemma rev_rev:
apply (induct xs)
P oapply auto
done

-u-:--- DemolList.thy 22% L20

proof (prove): step 1

goal (2 subgoals):
1. rev (rev Nil) = Nil
2. Na xs. rev (rev xs) = xs = rev (rev (Cons a xs)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck!

> Demolist.thy
X 4P XYM ..o 0w = 6 F
done

" T . B

fun rev where

lemma rev_rev:
apply (induct xs)
apply auto
P done

-u-:--- DemolList.thy 22% L22 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2

goal (1 subgoal):
1. Aa xs. rev (rev xs) = xs = rev (app (rev xs) (Cons a Nil)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next




Stuck!

> Demolist.thy
5ol el W T S ARSI | JCalE i 7 S <
done

N MmN

fun rev where
|

lemma rev_rev: .
apply (induct xs)
apply auto

» done

auto made progress
S . - S V5. o .
u-:--- Demolist.thy 22%122 (Isar Utoks Abbrev; Scg but didn’t finish

proof (prove): step 2

goal (1 subgoal):
1. Aa xs. rev (rev xs) = xs = rev (app (rev xs) (Cons a Nil)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar next




Stuck!

> Demolist.thy
DR 4P Yo = 6P
done

N MmN

fun rev where
|

lemma rev_rev: .
apply (induct xs)
apply auto

» done

auto made progress
S . - S V5. o .
u-:--- Demolist.thy 22%122 (Isar Utoks Abbrev; Scg but didn’t finish

proof (prove): step 2

goal (1 subgoal):
1. Aa xs. rev (rev xs) = xs = rev (app (rev xs) (Cons a Nil)) = Cons a xs

looks like we need a lemma

: |
_u-- *goals® T (i relating rev and app!

tool-bar next




Stuck Again!

Demolist.thy

DO A 4P Y .o = 6 F

fun rev where

lemma [simp]:
oply (induct xs)
/ auto
®» done

lemma rev_rev:
pply (induct xs)
-u-:--- DemolList.thy 21% L24 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2

goal (1 subgoal):
1. Aa xs.
rev (app xs ys) = app (rev ys) (rev xs) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck Again!

> Demolist.thy
DO A 4P Y .o 0w = 6 F

fun rev where

N N N

lemma [simp]:
apply (induct xs)
oply auto
» done

we dreamt up a lemma...

lemma rev_rev:
pply (induct xs)
-u-:--- DemolList.thy 21% L24 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2

goal (1 subgoal):
1. Aa xs.
rev (app xs ys) = app (rev ys) (rev xs) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck Again!

» Demolist.thy

DA 4P Y. = 6P

fun rev where

N NN

lemma [simp]: |
apply (induct xs
apply auto
» done

lemma rev_rev:
apply (induct xs)
~u-:--- DemolList.thy 21% L24

proof (prove): step 2
goal (1 subgoal): But it needs another

1. Aa xs.

rev (app xs ys) = app (rev ys) (rev xs) = Iemma!
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck Again!

> Demolist.thy

QX 4P Y. = 6P

fun rev where

N NN

lemma [simp]: |
apply (induct xs
apply auto
» done

lemma rev_rev:
apply (induct xs)
~u-:--- DemolList.thy 21% L24

proof (prove): step 2
goal (1 subgoal): But it needs another

1. Aa xs.

rev (app xs ys) = app (rev ys) (rev xs) = lemma!

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck Again!

> Demolist.thy

QX 4P Y. = 6P

fun rev where

N NN

lemma [simp]: |
apply (induct xs
apply auto
» done

lemma rev_rev:
apply (induct xs)
~u-:--- DemolList.thy 21% L24

proof (prove): step 2
goal (1 subgoal): But it needs another

1. Aa xs.

rev (app xs ys) = app (rev ys) (rev xs) = lemma!

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




Stuck Again!

N NN

» Demolist.thy

DA 4P Y. = 6P

fun rev where

lemma [simp]: |
apply (induct xs
apply auto
» done

lemma rev_rev:
apply (induct xs)
~u-:--- DemolList.thy 21% L24

proof (prove): step 2
goal (1 subgoal): But it needs another
1. Aa xs. '
lemma!

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
Wrote /Users/1pl15/Dropbox/ACS/1 - Introduction/DemolList.thy




The Final Piece of the

Demolist.thy

DO XX 4P XY .o O o

fun rev where
I

lemma [simp]:
(induct xs)
auto
done

lemma [simp]:
(induct xs)
~u-:**- DemoList.thy 22% L20 (Isar Utoks Abbrev; Scripting )

proof (prove): step 1

goal (2 subgoals):
1. app (app Nil ys) zs = app Nil (app ys zs)
2. Na xs.
app (app xs ys) zs = app xs (app ys zs) =
app (app (Cons a xs) ys) zs = app (Cons a xs) (app ys zs)

-u-:%¥%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)
tool-bar goto




The Finished Proof

QCO A 4 P Y r @ -

fun rev where
I

lemma [simp]:
apply (induct xs)
pply auto
done

lemma [simp]:
apply (induct xs)
pply auto
done

lemma rev_rev:
apply (induct xs)
pply auto
done

-u-:--- DemoList.thy 18% L35

Demolist.thy

ﬂ N ; 6 g

A

v

(Isar Utoks Abbrev;)------=-cemommmmmo oo

Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy




