
Interactive Formal Verification
2: Isabelle Theories

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge

A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
 Lf
 | Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
 apply (induct t)
 apply auto
 done

end

A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
 Lf
 | Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
 apply (induct t)
 apply auto
 done

end

name of the
new theory

A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
 Lf
 | Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
 apply (induct t)
 apply auto
 done

end

name of the
new theory

the theory it builds upon

A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
 Lf
 | Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
 apply (induct t)
 apply auto
 done

end

name of the
new theory

the theory it builds upon

declarations of types,
constants, etc

A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
 Lf
 | Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
 apply (induct t)
 apply auto
 done

end

name of the
new theory

the theory it builds upon

declarations of types,
constants, etc

proving a theorem

Notes on Theory Structure

Notes on Theory Structure

• A theory can import any existing theories.

Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

• The various declarations and proofs may
otherwise appear in any order.

Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

• The various declarations and proofs may
otherwise appear in any order.

• Many declarations can be confined to local scopes.

Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

• The various declarations and proofs may
otherwise appear in any order.

• Many declarations can be confined to local scopes.

• A finished theory can be imported by others.

Some Fancy Type Declarations
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

Some Fancy Type Declarations
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

new basic types

Some Fancy Type Declarations
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

new basic types

concrete syntax for commands

Some Fancy Type Declarations
typedecl loc -- "an unspecified type of locations"

type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type_synonym bexp = "state => bool" -- "functions on states"

datatype
 com = SKIP
 | Assign loc aexp ("_ :== _ " 60)
 | Semi com com ("_; _" [60, 60] 10)
 | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
 | While bexp com ("WHILE _ DO _" 60)

new basic types

recursive type of commands

concrete syntax for commands

Notes on Type Declarations

Notes on Type Declarations

• Type synonyms merely introduce abbreviations.

Notes on Type Declarations

• Type synonyms merely introduce abbreviations.

• Recursive data types are less general than in
functional programming languages.

• No recursion into the domain of a function.

• Mutually recursive definitions can be tricky.

Notes on Type Declarations

• Type synonyms merely introduce abbreviations.

• Recursive data types are less general than in
functional programming languages.

• No recursion into the domain of a function.

• Mutually recursive definitions can be tricky.

• Recursive types are equipped with proof methods
for induction and case analysis.

Basic Constant Definitions

Notes on Constant Definitions

Notes on Constant Definitions

• Basic definitions are not recursive.

Notes on Constant Definitions

• Basic definitions are not recursive.

• Every variable on the right-hand side must also
appear on the left.

Notes on Constant Definitions

• Basic definitions are not recursive.

• Every variable on the right-hand side must also
appear on the left.

• In proofs, definitions are not expanded by default!

• Defining the constant C to denote t yields the
theorem C_def, asserting C=t.

• Abbreviations can be declared through a
separate mechanism.

Lists in Isabelle

Lists in Isabelle

• We illustrate data types and functions using a
reduced Isabelle theory that lacks lists.

Lists in Isabelle

• We illustrate data types and functions using a
reduced Isabelle theory that lacks lists.

• The standard Isabelle environment has a
comprehensive list library:

• Functions # (cons), @ (append), map, filter,
nth, take, drop, takeWhile,
dropWhile, ...

• Cases: (case xs of [] ⇒ [] | x#xs ⇒ ...)

• Over 600 theorems!

List Induction Principle

List Induction Principle

To show φ(xs), it suffices to show the base case and
inductive step:

• φ(Nil)

• φ(xs) ⇒ φ(Cons(x,xs))

List Induction Principle

To show φ(xs), it suffices to show the base case and
inductive step:

• φ(Nil)

• φ(xs) ⇒ φ(Cons(x,xs))

The principle of case analysis is similar, expressing
that any list has one of the forms Nil or Cons(x,xs)
(for some x and xs).

Proof General

Proof General

processed material
highlighted in blue

Proof General

processed material
highlighted in blue

Isabelle’s output shown
in a separate window

Proof General

processed material
highlighted in blue

Isabelle’s output shown
in a separate window

the very start of
a proof attempt

Proof by Induction

Proof by Induction

structural induction
on the list xs

Proof by Induction

structural induction
on the list xs

base case and
inductive step

Proof by Induction

structural induction
on the list xs

base case and
inductive step

induction hypothesis

Finishing a Proof

Finishing a Proof

auto proves both

Finishing a Proof

auto proves both

We must still issue “done”
to register the theorem

Another Proof Attempt

Another Proof Attempt

list reversal function

Another Proof Attempt

list reversal function

Can we prove both subgoals?

Stuck!

Stuck!

auto made progress
but didn’t finish

Stuck!

auto made progress
but didn’t finish

looks like we need a lemma
relating rev and app!

Stuck Again!

Stuck Again!

we dreamt up a lemma...

Stuck Again!

we dreamt up a lemma...

But it needs another
lemma!

Stuck Again!

we dreamt up a lemma...

But it needs another
lemma!

Stuck Again!

we dreamt up a lemma...

But it needs another
lemma!

Stuck Again!

we dreamt up a lemma...

But it needs another
lemma!

The Final Piece of the Jigsaw

The Finished Proof

