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A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
    Lf
  | Br 'a  "'a bt"  "'a bt"

fun reflect :: "'a bt => 'a bt" where
  "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
  apply (induct t)
   apply auto
  done

end
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A Tiny Theory
theory BT imports Main begin

datatype 'a bt =
    Lf
  | Br 'a  "'a bt"  "'a bt"

fun reflect :: "'a bt => 'a bt" where
  "reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"
  apply (induct t)
   apply auto
  done

end

name of the 
new theory

the theory it builds upon

declarations of types, 
constants, etc

proving a theorem
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Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

• The various declarations and proofs may 
otherwise appear in any order.

• Many declarations can be confined to local scopes.

• A finished theory can be imported by others.



Some Fancy Type Declarations
typedecl loc  -- "an unspecified type of locations"

type_synonym val   = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp  = "state => val"  
type_synonym bexp  = "state => bool"  -- "functions on states"

datatype
  com = SKIP                    
      | Assign loc aexp         ("_ :== _ " 60)
      | Semi   com com          ("_; _"  [60, 60] 10)
      | Cond   bexp com com     ("IF _ THEN _ ELSE _"  60)
      | While  bexp com         ("WHILE _ DO _"  60)
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Some Fancy Type Declarations
typedecl loc  -- "an unspecified type of locations"

type_synonym val   = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp  = "state => val"  
type_synonym bexp  = "state => bool"  -- "functions on states"

datatype
  com = SKIP                    
      | Assign loc aexp         ("_ :== _ " 60)
      | Semi   com com          ("_; _"  [60, 60] 10)
      | Cond   bexp com com     ("IF _ THEN _ ELSE _"  60)
      | While  bexp com         ("WHILE _ DO _"  60)

new basic types

recursive type of commands

concrete syntax for commands
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Notes on Type Declarations

• Type synonyms merely introduce abbreviations. 

• Recursive data types are less general than in 
functional programming languages.

• No recursion into the domain of a function.

• Mutually recursive definitions can be tricky.

• Recursive types are equipped with proof methods 
for induction and case analysis.
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Notes on Constant Definitions

• Basic definitions are not recursive.

• Every variable on the right-hand side must also 
appear on the left.

• In proofs, definitions are not expanded by default!

• Defining the constant C to denote t yields the 
theorem C_def, asserting C=t.

• Abbreviations can be declared through a 
separate mechanism.
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Lists in Isabelle

• We illustrate data types and functions using a 
reduced Isabelle theory that lacks lists.

• The standard Isabelle environment has a 
comprehensive list library:

• Functions # (cons), @ (append), map, filter, 
nth, take, drop, takeWhile, 
dropWhile, ...

• Cases: (case xs of [] ⇒ [] | x#xs ⇒ ...)

• Over 600 theorems!
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List Induction Principle

To show φ(xs), it suffices to show the base case and 
inductive step:

• φ(Nil)

• φ(xs) ⇒ φ(Cons(x,xs))

The principle of case analysis is similar, expressing 
that any list has one of the forms Nil or Cons(x,xs) 
(for some x and xs).
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Proof General

processed material 
highlighted in blue

Isabelle’s output shown 
in a separate window

the very start of 
a proof attempt
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Proof by Induction

structural induction 
on the list xs

base case and 
inductive step

induction hypothesis
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Finishing a Proof

auto proves both 

We must still issue “done” 
to register the theorem
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Another Proof Attempt

list reversal function

Can we prove both subgoals?
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Stuck!

auto made progress 
but didn’t finish

looks like we need a lemma 
relating rev and app!



Stuck Again!



Stuck Again!

we dreamt up a lemma...



Stuck Again!

we dreamt up a lemma...

But it needs another  
lemma! 



Stuck Again!

we dreamt up a lemma...

But it needs another  
lemma! 



Stuck Again!

we dreamt up a lemma...

But it needs another  
lemma! 



Stuck Again!

we dreamt up a lemma...

But it needs another  
lemma! 
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The Finished Proof


