Interactive Formal Verification 2: Isabelle Theories

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

A Tiny Theory

```
theory BT imports Main begin
datatype 'a bt =
   Lf
  Br 'a "'a bt" "'a bt"
fun reflect :: "'a bt => 'a bt" where
 "reflect Lf = Lf"
"reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"
lemma reflect reflect ident: "reflect (reflect t) = t"
 apply (induct t)
  apply auto
 done
```

name of the A Tiny Theory new theory theory BT imports Main begin datatype 'a bt = Lf Br 'a "'a bt" "'a bt" fun reflect :: "'a bt => 'a bt" where "reflect Lf = Lf" "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)" lemma reflect_reflect_ident: "reflect (reflect t) = t" apply (induct t) apply auto done

• A theory can *import* any existing theories.

- A theory can *import* any existing theories.
- Types, constants, etc., must be declared before use.

- A theory can *import* any existing theories.
- Types, constants, etc., must be declared before use.
- The various declarations and proofs may otherwise appear in any order.

- A theory can *import* any existing theories.
- Types, constants, etc., must be declared before use.
- The various declarations and proofs may otherwise appear in any order.
- Many declarations can be confined to local scopes.

- A theory can *import* any existing theories.
- Types, constants, etc., must be declared before use.
- The various declarations and proofs may otherwise appear in any order.
- Many declarations can be confined to local scopes.
- A finished theory can be imported by others.

typedecl loc -- "an unspecified type of locations"

```
type_synonym val = nat -- "values"
type_synonym state = "loc => val"
type_synonym aexp = "state => val"
type synonym bexp = "state => bool" -- "functions on states"
```

```
datatype
    com = SKIP
        | Assign loc aexp ("_ :== _ " 60)
        | Semi com com ("_; _" [60, 60] 10)
        | Cond bexp com com ("IF _ THEN _ ELSE _" 60)
        | While bexp com ("WHILE _ DO _" 60)
```

typedecl loc -- "an unspecified type of locations"

Cond bexp com com While bexp com

("_:== __ 60) ("_; _" [60, 60] 10) ("IF _ THEN _ ELSE _" 60) ("WHILE _ DO _" 60)

typedecl loc -- "an unspecified type of locations"

typedecl loc -- "an unspecified type of locations"

recursive type of commands

• Type synonyms merely introduce *abbreviations*.

- Type synonyms merely introduce *abbreviations*.
- Recursive data types are less general than in functional programming languages.
 - No recursion into the domain of a function.
 - Mutually recursive definitions can be tricky.

- Type synonyms merely introduce *abbreviations*.
- Recursive data types are less general than in functional programming languages.
 - No recursion into the domain of a function.
 - Mutually recursive definitions can be tricky.
- Recursive types are equipped with proof methods for *induction* and *case analysis*.

Basic Constant Definitions

$\odot \odot \odot$	Def.thy	\bigcirc
00 00 🗶 🔺 🕨	🗴 🛏 🖀 🔎 🕦 🕼 🗢 😌 🚏	
theory Def import	s Main begin	n
<pre>text{*The square definition square "square n = r</pre>	of a natural number*} :: "nat => nat" where *n"	
text{*The concept	of a prime number*}	
definition prime	:: "nat => bool" where $p \land (\forall m \ m \ dvd \ p \ \longrightarrow \ m \ - \ 1 \ \lor \ m \ - \ p))$ "	
	$p \wedge (m \cdot m \cdot u \vee u \cdot p \cdot \gamma \cdot m - 1 \vee m - p))$	A V
-u-:**- Def.thy<	> Top L10 (Isar Utoks Abbrev; Scripting)	
constants prime :: "nat =	> bool"	
-u-:%%- *response	* All L2 (Isar Messages Utoks Abbrev;)	
Auto-savingdor	e	11.

• Basic definitions are *not* recursive.

- Basic definitions are *not* recursive.
- Every variable on the right-hand side must also appear on the left.

- Basic definitions are not recursive.
- Every variable on the right-hand side must also appear on the left.
- In proofs, definitions are *not* expanded by default!
 - Defining the constant C to denote t yields the theorem C_def, asserting C=t.
 - Abbreviations can be declared through a separate mechanism.

Lists in Isabelle

Lists in Isabelle

• We illustrate data types and functions using a reduced Isabelle theory that lacks lists.

Lists in Isabelle

- We illustrate data types and functions using a reduced Isabelle theory that lacks lists.
- The standard Isabelle environment has a comprehensive list library:
 - Functions # (cons), @ (append), map, filter, nth, take, drop, takeWhile, dropWhile, ...
 - Cases: (case xs of $[] \Rightarrow [] | x#xs \Rightarrow ...)$
 - Over 600 theorems!

List Induction Principle

List Induction Principle

To show $\varphi(xs)$, it suffices to show the base case and *inductive step*:

- φ(Nil)
- $\phi(xs) \Rightarrow \phi(Cons(x,xs))$

List Induction Principle

To show $\varphi(xs)$, it suffices to show the base case and inductive step:

- φ(Nil)
- $\phi(xs) \Rightarrow \phi(Cons(x,xs))$

The principle of case analysis is similar, expressing that any list has one of the forms Nil or Cons(x,xs) (for some x and xs).

```
000
                                DemoList.thy
○ ○ ▲ ◀ ▶ ⊻ ⊨ 4 🖀 🔎 🗊 🛩 😄 🤣 🚏
 theory DemoList imports Plain (*not Main, because lists are built-in*)
 begin
 datatype 'a list = Nil | Cons 'a "'a list"
 fun app :: "'a list => 'a list => 'a list" where
  "app Nil ys = ys"
 "app (Cons x xs) ys = Cons x (app xs ys)"
 lemma [simp]: "app xs Nil = xs"
 apply (induct xs)
  apply auto
-u-:--- DemoList.thy Top L10
                               (Isar Utoks Abbrev; Scripting )-----
 proof (prove): step 0
 goal (1 subgoal):
1. app xs Nil = xs
                               (Isar Proofstate Utoks Abbrev;)-----
-u-:%%- *goals*
                     Top L1
```



```
000
                                 DemoList.thy
                                                         10
00 00 T
                  🕨 🗶 🛏 🖀 🔎 🚺 🕼 🗢 😌
 theory DemoList imports Plain (*not Main, because lists are built-in*)
 begin
 datatype 'a list = Nil | Cons 'a "'a list"
 fun app :: "'a list => 'a list => 'a list" where
  "app Nil ys = ys"
 "app (Cons x xs) ys = Cons x (app xs ys)"
lemma [simp]: "app xs Nil = xs"
  apply (induct xs)
 apply auto
-u-:--- DemoList.thy Top L12
                                 (Isar Utoks Abbrev; Scripting )------
 proof (prove): step 1
 goal (2 subgoals):

    app Nil Nil = Nil

  2. A xs. app xs Nil = xs \Rightarrow app (Cons a xs) Nil = Cons a xs
-u-:%%- *goals*
                      Top L1
                                 (Isar Proofstate Utoks Abbrev;)------
 tool-bar next
```


Finishing a Proof

000		DemoList.thy	\bigcirc
00 00 🗶 🔺 🕨	• X •4	🖀 🔎 🚯 🕼 🤤 😌 🚏 🔛	
datatype 'a list = N	il Cons '	a "'a list"	6
fun app :: "'a list	=> 'a list	=> 'a list" where	U
"app Nil ys = ys" "app (Cons x xs) y	s = Cons x	(app xs ys)"	
lemma [simp]: "app x	s Nil = xs"		
apply (induct xs)	5 HTT - X5		
 done 			
-u-: DemoList.thy	7% L4	(Isar Utoks Abbrev; Scripting)	
proof (prove): step	2		n
goal:			
No subgoals!			
)) 4
-U-*%- *aoals*	Top 11	(Isar Proofstate Utoks Abbrev:)	Ţ
gours	TOP LI		1.

Finishing a Proof

Finishing a Proof

Another Proof Attempt

```
000
                               DemoList.thy
                                🔎 🚯 🕼 🤤 🥵 💱
00 00 👗
                 done
 fun rev where
  "rev Nil = Nil"
 "rev (Cons x xs) = app (rev xs) (Cons x Nil)"
 lemma rev_rev: "rev (rev xs) = xs"
  apply (induct xs)
  apply auto
   done
-u-:--- DemoList.thy 22% L20 (Isar Utoks Abbrev; Scripting)------
proof (prove): step 1
 goal (2 subgoals):
1. rev (rev Nil) = Nil
 2. Aa xs. rev (rev xs) = xs \implies rev (rev (Cons a xs)) = Cons a xs
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```

Another Proof Attempt

Another Proof Attempt

Stuck!

```
000
                              DemoList.thy
🎿 🚺 🕼 🤤 🤣 💱
  done
 fun rev where
  "rev Nil = Nil"
 I "rev (Cons x xs) = app (rev xs) (Cons x Nil)"
 lemma rev_rev: "rev (rev xs) = xs"
  apply (induct xs)
  apply auto
  done
-u-:--- DemoList.thy 22% L22 (Isar Utoks Abbrev; Scripting )------
proof (prove): step 2
 goal (1 subgoal):
1. A xs. rev (rev xs) = xs \Rightarrow rev (app (rev xs) (Cons a Nil)) = Cons a xs
-u-:%%- *goals*
                     Top L1 (Isar Proofstate Utoks Abbrev;)------
tool-bar next
```

Stuck!

Stuck!


```
000
                                DemoList.thy
00 00 🔳 🔺 🕨 🗶 🖂 🖀 🔎 🚺 🕼 🧉
                                                        10
                                                    Ð
 fun rev where
  "rev Nil = Nil"
 "rev (Cons x xs) = app (rev xs) (Cons x Nil)"
lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
  apply (induct xs)
  apply auto
   done
lemma rev_rev: "rev (rev xs) = xs"
  apply (induct xs)
-u-:--- DemoList.thy 21% L24 (Isar Utoks Abbrev; Scripting )-----
 proof (prove): step 2
 goal (1 subgoal):
 1. Aa xs.
       rev (app xs ys) = app (rev ys) (rev xs) \Rightarrow
       app (app (rev ys) (rev xs)) (Cons a Nil) =
       app (rev ys) (app (rev xs) (Cons a Nil))
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```


The Final Piece of the Jigsaw

```
000
                                 DemoList.thy
                                  🔎 🚺 🐙 🌐
                                                    - 🔂  🗑
00 00 👗
              A D Y D4 A
 fun rev where
  "rev Nil = Nil"
 "rev (Cons x xs) = app (rev xs) (Cons x Nil)"
lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
  apply (induct xs)
  apply auto
   done
lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
  apply (induct xs)
-u-:**- DemoList.thy 22% L20 (Isar Utoks Abbrev; Scripting )-----
 proof (prove): step 1
 goal (2 subgoals):
 1. app (app Nil ys) zs = app Nil (app ys zs)
  2. Aa xs.
       app (app xs ys) zs = app xs (app ys zs) \Rightarrow
       app (app (Cons a xs) ys) zs = app (Cons a xs) (app ys zs)
-u-:%%- *aoals*
                      Top L1 (Isar Proofstate Utoks Abbrev;)------
tool-bar goto
```

The Finished Proof

```
000
                                 DemoList.thy
                                                                             \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
fun rev where
  "rev Nil = Nil"
"rev (Cons x xs) = app (rev xs) (Cons x Nil)"
lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
  apply (induct xs)
  apply auto
  done
lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
  apply (induct xs)
  apply auto
  done
lemma rev_rev: "rev (rev xs) = xs"
  apply (induct xs)
  apply auto
  done
-u-:--- DemoList.thy 18% L35 (Isar Utoks Abbrev;)------
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```